Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38543499

ABSTRACT

Plant-microbe associations define a key interaction and have significant ecological and biotechnological perspectives. In recent times, plant-associated microbes from extreme environments have been extensively explored for their multifaceted benefits to plants and the environment, thereby gaining momentum in global research. Plant-associated extremophiles highlight ubiquitous occurrences, inhabiting extreme habitats and exhibiting enormous diversity. The remarkable capacity of extremophiles to exist in extreme environmental conditions is attributed to the evolution of adaptive mechanisms in these microbes at genetic and physiological levels. In addition, the plant-associated extremophiles have a major impact in promoting plant growth and development and conferring stress tolerance to the host plant, thereby contributing immensely to plant adaptation and survival in extreme conditions. Considering the major impact of plant-associated extremophiles from a socio-economic perspective, the article discusses their significance in emerging biotechnologies with a key focus on their ecological role and dynamic interaction with plants. Through this article, the authors aim to discuss and understand the favorable impact and dynamics of plant-associated extremophiles and their biotechnological utilities.

2.
Nat Prod Res ; : 1-10, 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37086477

ABSTRACT

CDK7 and FynB protein kinases have been recognized as relevant targets for cancer and brain diseases treatment due to their pivotal regulatory roles in cellular functions such as cell cycle and neural signal transduction. Several studies demonstrated that the inhibition of these proteins could be useful in altering the onset or progression of these diseases. Based on bioassay-guided approach, the extract of the marine sponge Lendenfeldia chondrodes (Thorectidae), which exhibited interesting kinase inhibitory activities, was fractionated. The investigation led to the isolation of five known 1-5 and one new 6 polybrominated diphenyl ethers (PBDEs). Their structure elucidation was established based on spectroscopic data (NMR and HRMS) and comparison with literature data.

3.
Microorganisms ; 11(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36985186

ABSTRACT

Synthetic dyes and colourants have been the mainstay of the pigment industry for decades. Researchers are eager to find a more environment friendly and non-toxic substitute because these synthetic dyes have a negative impact on the environment and people's health. Microbial pigments might be an alternative to synthetic pigments. Microbial pigments are categorized as secondary metabolites and are mainly produced due to impaired metabolism under stressful conditions. These pigments have vibrant shades and possess nutritional and therapeutic properties compared to synthetic pigment. Microbial pigments are now widely used within the pharmaceuticals, food, paints, and textile industries. The pharmaceutical industries currently use bacterial pigments as a medicine alternative for cancer and many other bacterial infections. Their growing popularity is a result of their low cost, biodegradable, non-carcinogenic, and environmentally beneficial attributes. This audit article has made an effort to take an in-depth look into the existing uses of bacterial pigments in the food and pharmaceutical industries and project their potential future applications.

4.
Microorganisms ; 11(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985270

ABSTRACT

Despite considerable advances in medicine and technology, humanity still faces many deadly diseases such as cancer and malaria. In order to find appropriate treatments, the discovery of new bioactive substances is essential. Therefore, research is now turning to less frequently explored habitats with exceptional biodiversity such as the marine environment. Many studies have demonstrated the therapeutic potential of bioactive compounds from marine macro- and microorganisms. In this study, nine microbial strains isolated from an Indian Ocean sponge, Scopalina hapalia, were screened for their chemical potential. The isolates belong to different phyla, some of which are already known for their production of secondary metabolites, such as the actinobacteria. This article aims at describing the selection method used to identify the most promising microorganisms in the field of active metabolites production. The method is based on the combination of their biological and chemical screening, coupled with the use of bioinformatic tools. The dereplication of microbial extracts and the creation of a molecular network revealed the presence of known bioactive molecules such as staurosporin, erythromycin and chaetoglobosins. Molecular network exploration indicated the possible presence of novel compounds in clusters of interest. The biological activities targeted in the study were cytotoxicity against the HCT-116 and MDA-MB-231 cell lines and antiplasmodial activity against Plasmodium falciparum 3D7. Chaetomium globosum SH-123 and Salinispora arenicola SH-78 strains actually showed remarkable cytotoxic and antiplasmodial activities, while Micromonospora fluostatini SH-82 demonstrated promising antiplasmodial effects. The ranking of the microorganisms as a result of the different screening steps allowed the selection of a promising strain, Micromonospora fluostatini SH-82, as a premium candidate for the discovery of new drugs.

5.
Mar Drugs ; 22(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38248648

ABSTRACT

Actinobacteria are known for their production of bioactive specialized metabolites, but they are still under-exploited. This study uses the "One Strain Many Compounds" (OSMAC) method to explore the potential of three preselected marine-derived actinobacteria: Salinispora arenicola (SH-78) and two Micromonospora sp. strains (SH-82 and SH-57). Various parameters, including the duration of the culture and the nature of the growth medium, were modified to assess their impact on the production of specialized metabolites. This approach involved a characterization based on chemical analysis completed with the construction of molecular networks and biological testing to evaluate cytotoxic and antiplasmodial activities. The results indicated that the influence of culture parameters depended on the studied species and also varied in relation with the microbial metabolites targeted. However, common favorable parameters could be observed for all strains such as an increase in the duration of the culture or the use of the A1 medium. For Micromonospora sp. SH-82, the solid A1 medium culture over 21 days favored a greater chemical diversity. A rise in the antiplasmodial activity was observed with this culture duration, with a IC50 twice as low as for the 14-day culture. Micromonospora sp. SH-57 produced more diverse natural products in liquid culture, with approximately 54% of nodes from the molecular network specifically linked to the type of culture support. Enhanced biological activities were also observed with specific sets of parameters. Finally, for Salinispora arenicola SH-78, liquid culture allowed a greater diversity of metabolites, but intensity variations were specifically observed for some metabolites under other conditions. Notably, compounds related to staurosporine were more abundant in solid culture. Consequently, in the range of the chosen parameters, optimal conditions to enhance metabolic diversity and biological activities in these three marine-derived actinobacteria were identified, paving the way for future isolation works.


Subject(s)
Actinobacteria , Antimalarials , Micromonospora , Micromonosporaceae , Antimalarials/pharmacology , Metabolomics , Bacteria
6.
Microorganisms ; 10(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557694

ABSTRACT

Microplastics (MPs) pose potential public health challenges because of their widespread occurrences in all environmental compartments. While most studies have focused on the occurrence fate of microplastics in wastewater treatment systems, the biodegradation of microplastics in wastewater is generally little understood. Therefore, we used two Gram-positive and thermophilic bacteria, called strain ST3 and ST6, which were identified by morphological, biochemical, physiological, and molecular analyses, to assess the growth and biodegradation potential of two different sized (50 and 150 m) polyethylene particles. The degradation was monitored based on structural and surface morphological changes. According to 16S rRNA analyses, ST3 and ST6 were identified as Anoxybacillus flavithermus ST3 and Anoxybacillus sp. ST6, respectively. The occurrence of cracks, holes, and dimensional changes was detected by scanning electron microscopy. Moreover, critical characteristic absorption band formation and modifications were determined by Fourier transform infrared spectroscopy. In addition to these, it was found that Anoxybacillus flavithermus ST3 and Anoxybacillus sp. ST6 produced high level of alpha-Amylase. These results showed that thermophilic bacteria are capable of the biodegradation of microplastics and production of alpha-Amylase.

7.
Microorganisms ; 10(5)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35630345

ABSTRACT

Rhizospheric plant-microbe interactions have dynamic importance in sustainable agriculture systems that have a reduced reliance on agrochemicals. Rhizosphere signaling focuses on the interactions between plants and the surrounding symbiotic microorganisms that facilitate the development of rhizobiome diversity, which is beneficial for plant productivity. Plant-microbe communication comprises intricate systems that modulate local and systemic defense mechanisms to mitigate environmental stresses. This review deciphers insights into how the exudation of plant secondary metabolites can shape the functions and diversity of the root microbiome. It also elaborates on how rhizosphere interactions influence plant growth, regulate plant immunity against phytopathogens, and prime the plant for protection against biotic and abiotic stresses, along with some recent well-reported examples. A holistic understanding of these interactions can help in the development of tailored microbial inoculants for enhanced plant growth and targeted disease suppression.

8.
Mar Drugs ; 20(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35323485

ABSTRACT

The biological screening of 44 marine sponge extracts for the research of bioactive molecules, with potential application in the treatment of age-related diseases (cancer and Alzheimer's disease) and skin aging, resulted in the selection of Scopalina hapalia extract for chemical study. As no reports of secondary metabolites of S. hapalia were found in the literature, we undertook this research to further extend current knowledge of Scopalina chemistry. The investigation of this species led to the discovery of four new compounds: two butenolides sinularone J (1) and sinularone K (2), one phospholipid 1-O-octadecyl-2-pentanoyl-sn-glycero-3-phosphocholine (3) and one lysophospholipid 1-O-(3-methoxy-tetradecanoyl)-sn-glycero-3-phosphocholine (4) alongside with known lysophospholipids (5 and 6), alkylglycerols (7-10), epidioxysterols (11 and 12) and diketopiperazines (13 and 14). The structure elucidation of the new metabolites (1-4) was determined by detailed spectroscopic analysis, including 1D and 2D NMR as well as mass spectrometry. Molecular networking was also explored to complement classical investigation and unravel the chemical classes within this species. GNPS analysis provided further information on potential metabolites with additional bioactive natural compounds predicted.


Subject(s)
4-Butyrolactone/analogs & derivatives , Biological Products , Phospholipids , Piperazines , Porifera/chemistry , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , Animals , Bays , Biological Products/chemistry , Biological Products/isolation & purification , Comoros , Magnetic Resonance Spectroscopy , Molecular Structure , Phospholipids/chemistry , Phospholipids/isolation & purification , Piperazines/chemistry , Piperazines/isolation & purification , Porifera/metabolism
9.
Microorganisms ; 10(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35056572

ABSTRACT

In recent decades scientific research has demonstrated that the microbial world is infinitely richer and more surprising than we could have imagined. Every day, new molecules produced by microorganisms are discovered, and their incredible diversity has not yet delivered all of its messages. The current challenge of research is to select from the wide variety of characterized microorganisms and compounds, those which could provide rapid answers to crucial questions about human or animal health or more generally relating to society's demands for medicine, pharmacology, nutrition or everyday well-being.

10.
Mar Drugs ; 19(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925595

ABSTRACT

Pigment production from filamentous fungi is gaining interest due to the diversity of fungal species, the variety of compounds synthesized, and the possibility of controlled massive productions. The Talaromyces species produce a large panel of metabolites, including Monascus-like azaphilone pigments, with potential use as natural colorants in industrial applications. Optimizing pigment production from fungal strains grown on different carbon and nitrogen sources, using statistical methods, is widespread nowadays. The present work is the first in an attempt to optimize pigments production in a culture of the marine-derived T. albobiverticillius 30548, under the influence of several nutrients sources. Nutrient combinations were screened through the one-variable-at-a-time (OVAT) analysis. Sucrose combined with yeast extract provided a maximum yield of orange pigments (OPY) and red pigments (RPY) (respectively, 1.39 g/L quinizarin equivalent and 2.44 g/L Red Yeast pigment equivalent), as well as higher dry biomass (DBW) (6.60 g/L). Significant medium components (yeast extract, K2HPO4 and MgSO4·7H2O) were also identified from one-variable-at-a-time (OVAT) analysis for pigment and biomass production. A five-level central composite design (CCD) and a response surface methodology (RSM) were applied to evaluate the optimal concentrations and interactive effects between selected nutrients. The experimental results were well fitted with the chosen statistical model. The predicted maximum response for OPY (1.43 g/L), RPY (2.59 g/L), and DBW (15.98 g/L) were obtained at 3 g/L yeast extract, 1 g/L K2HPO4, and 0.2 g/L MgSO4·7H2O. Such optimization is of great significance for the selection of key nutrients and their concentrations in order to increase the pigment production at a pilot or industrial scale.


Subject(s)
Industrial Microbiology , Pigments, Biological/metabolism , Talaromyces/metabolism , Biomass , Geologic Sediments/microbiology , Magnesium Sulfate/metabolism , Models, Statistical , Phosphates/metabolism , Potassium Compounds/metabolism , Sucrose/metabolism , Talaromyces/growth & development , Yeasts/metabolism
11.
J Fungi (Basel) ; 7(4)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916573

ABSTRACT

Fungi: 1, 2, 3, [...].

12.
J Fungi (Basel) ; 6(4)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352851

ABSTRACT

Demand for microbial colorants is now becoming a competitive research topic for food, cosmetics and pharmaceutics industries. In most applications, the pigments of interest such as polyketide-based red pigments from fungal submerged cultures are extracted by conventional liquid-liquid extraction methods requiring large volumes of various organic solvents and time. To address this question from a different angle, we proposed, here, to investigate the use of three different aqueous two-phase extraction systems using either ammonium- or imidazolium-based ionic liquids. We applied these to four fermentation broths of Talaromyces albobiverticillius (deep red pigment producer), Emericella purpurea (red pigment producer), Paecilomyces marquandii (yellow pigment producer) and Trichoderma harzianum (yellow-brown pigment producer) to investigate their selective extraction abilities towards the detection of polyketide-based pigments. Our findings led us to conclude that (i) these alternative extraction systems using ionic liquids as greener extractant means worked well for this extraction of colored molecules from the fermentation broths of the filamentous fungi investigated here; (ii) tetrabutylammonium bromide, [N4444]Br-, showed the best pigment extraction ability, with a higher putative affinity for azaphilone red pigments; (iii) the back extraction and recovery of the fungal pigments from ionic liquid phases remained the limiting point of the method under our selected conditions for potential industrial applications. Nevertheless, these alternative extraction procedures appeared to be promising ways for the detection of polyketide-based colorants in the submerged cultures of filamentous fungi.

13.
Microorganisms ; 9(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375136

ABSTRACT

Marine bacterial species contribute to a significant part of the oceanic population, which substantially produces biologically effectual moieties having various medical and industrial applications. The use of marine-derived bacterial pigments displays a snowballing effect in recent times, being natural, environmentally safe, and health beneficial compounds. Although isolating marine bacteria is a strenuous task, these are still a compelling subject for researchers, due to their promising avenues for numerous applications. Marine-derived bacterial pigments serve as valuable products in the food, pharmaceutical, textile, and cosmetic industries due to their beneficial attributes, including anticancer, antimicrobial, antioxidant, and cytotoxic activities. Biodegradability and higher environmental compatibility further strengthen the use of marine bio-pigments over artificially acquired colored molecules. Besides that, hazardous effects associated with the consumption of synthetic colors further substantiated the use of marine dyes as color additives in industries as well. This review sheds light on marine bacterial sources of pigmented compounds along with their industrial applicability and therapeutic insights based on the data available in the literature. It also encompasses the need for introducing bacterial bio-pigments in global pigment industry, highlighting their future potential, aiming to contribute to the worldwide economy.

14.
Microorganisms ; 8(12)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287158

ABSTRACT

Many species of Talaromyces of marine origin could be considered as non-toxigenic fungal cell factory. Some strains could produce water-soluble active biopigments in submerged cultures. These fungal pigments are of interest due to their applications in the design of new pharmaceutical products. In this study, the azaphilone red pigments and ergosterol derivatives produced by a wild type of Talaromyces sp. 30570 (CBS 206.89 B) marine-derived fungal strain with industrial relevance were described. The strain was isolated from the coral reef of the Réunion island. An alternative extraction of the fungal pigments using high pressure with eco-friendly solvents was studied. Twelve different red pigments were detected, including two pigmented ergosterol derivatives. Nine metabolites were identified using HPLC-PDA-ESI/MS as Monascus-like azaphilone pigments. In particular, derivatives of nitrogen-containing azaphilone red pigment, like PP-R, 6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V, N-threonine-monascorubramin, N-glutaryl-rubropunctamin, monascorubramin, and presumed N-threonyl-rubropunctamin (or acid form of the pigment PP-R) were the major pigmented compounds produced. Interestingly, the bioproduction of these red pigments occurred only when complex organic nitrogen sources were present in the culture medium. These findings are important for the field of the selective production of Monascus-like azaphilone red pigments for the industries.

15.
Microorganisms ; 8(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825344

ABSTRACT

Aging research aims at developing therapies that delay normal aging processes and some related pathologies. Recently, many compounds and extracts from natural products have been shown to slow aging and/or extend lifespan. Marine sponges and their associated microorganisms have been found to produce a wide variety of bioactive secondary metabolites; however, those from the Southwest of the Indian Ocean are much less studied, especially regarding anti-aging activities. In this study, the microbial diversity of the marine sponge Scopalina hapalia was investigated by metagenomic analysis. Twenty-six bacterial and two archaeal phyla were recovered from the sponge, of which the Proteobacteria phylum was the most abundant. In addition, 30 isolates from S. hapalia were selected and cultivated for identification and secondary metabolites production. The selected isolates were affiliated to the genera Bacillus, Micromonospora, Rhodoccocus, Salinispora, Aspergillus, Chaetomium, Nigrospora and unidentified genera related to the family Thermoactinomycetaceae. Crude extracts from selected microbial cultures were found to be active against seven clinically relevant targets (elastase, tyrosinase, catalase, sirtuin 1, Cyclin-dependent kinase 7 (CDK7), Fyn kinase and proteasome). These results highlight the potential of microorganisms associated with a marine sponge from Mayotte to produce anti-aging compounds. Future work will focus on the isolation and the characterization of bioactive compounds.

16.
Microorganisms ; 8(5)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403428

ABSTRACT

Talaromyces albobiverticillius 30548 is a marine-derived pigment producing filamentous fungus, isolated from the La Réunion island, in the Indian Ocean. The objective of this study was to examine and optimize the submerged fermentation (SmF) process parameters such as initial pH (4-9), temperature (21-27 °C), agitation speed (100-200 rpm), and fermentation time (0-336 h), for maximum production of pigments (orange and red) and biomass, using the Box-Behnken Experimental Design and Response Surface Modeling (BBED and RSM). This methodology allowed consideration of multifactorial interactions between a set of parameters. Experiments were carried out based on the BBED using 250 mL shake flasks, with a 100 mL working volume of potato dextrose broth (PDB). From the experimental data, mathematical models were developed to predict the pigments and biomass yields. The individual and interactive effects of the process variables on the responses were also investigated (RSM). The optimal conditions for maximum production of pigments and biomass were derived by the numerical optimization method, as follows-initial pH of 6.4, temperature of 24 °C, agitation speed of 164 rpm, and fermentation time of 149 h, respectively.

18.
Microorganisms ; 7(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30626101

ABSTRACT

Marine-derived fungi that inhabit severe changing environments have gained increasing interest for their ability to produce structurally unique natural products. Fungi belonging to the Talaromyces and the close Penicillium genera are among the most promising microbes for bioactive compound production, including colored metabolites. Coupling pigment producing capability with bioactive effectiveness would be a valuable challenge in some specific fields such as dyeing, cosmeceutical, or food industries. In this sense, Talaromyces albobiverticillius 30548, a red pigment producing strain, has been isolated from the marine environment of Reunion Island, Indian Ocean. In this research, we analyzed the effect of temperatures (21⁻27 °C) and salinity levels (0⁻9%) on fungal growth and pigment production. Maximum pigment yield was obtained in non-salted media, when cultured at 27 °C after 10 days of submerged fermentation in PDB. However, maximum dry biomass production was achieved at stressed condition with 9% sea salts concentrated media at the same temperature. The results indicate that salinity of the culture media positively influences the growth of the biomass. Inversely, pigment production decreases with increase in salinity over 6%. Color coordinates of secreted pigments were expressed in CIELAB color system. The hue angles (h°) ranged from red to yellow colors. This indicated that the color distribution of fungal pigments depends on the salinity in the culture media. This study emphasizes the impact of abiotic stress (salt and temperature) on the growth and metabolome of marine-derived fungal strains.

19.
Foods ; 7(11)2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30463179

ABSTRACT

Arthrobacter arilaitensis is a food-related bacterial species under investigation for its involvement in the coloration of surface-ripened cheeses. Presently, information about this species in association with the development of appropriate cheese coloration is still lacking. This study was performed in order to investigate-with the use of spectrocolorimetry-the influence of pH, NaCl, and deacidifying yeasts on the pigmentation of Arthrobacter arilaitensis biofilms. Three types of cheese-based (curd) solid media were prepared by using different deacidification methods: (i) chemical deacidification by NaOH (CMNaOH); (ii) biological deacidification by the yeast strain Debaryomyces hansenii 304 (CMDh304); and (iii) biological deacidification by the yeast strain Kluyveromyces marxianus 44 (CMKm44). Each medium was prepared with initial pH values of 5.8, 7.0, and 7.5. After pasteurization, agar was incorporated and NaCl was added in varying concentrations (0%, 2%, 4%, and 8% (w/v)). A. arilaitensis Po102 was then inoculated on the so prepared "solid-curd" media, and incubated at 12 °C under light conditions for 28 days. According to the data obtained by spectrocolorimetry in the Compagnie Internationale de l'Eclairage (CIE) L*a*b* color system, all controlled factors appeared to affect the pigments produced by the A. arilaitensis strain. NaCl content in the media showed distinct inhibitory effects on the development of color by this strain when the initial pH was at 5.8. By contrast, when the initial pH of the media was higher (7.0, 7.5), only the highest concentration of NaCl (8%) had this effect, while the coloring capacity of this bacterial species was always higher when D. hansenii 304 was used for deacidification compared to K. marxianus 44.

20.
J Fungi (Basel) ; 3(3)2017 Jun 28.
Article in English | MEDLINE | ID: mdl-29371552

ABSTRACT

The use of ascomycetous fungi as pigment producers opens the way to an alternative to synthetic dyes, especially in the red-dye industries, which have very few natural pigment alternatives. The present paper aimed to bio-prospect and screen out 15 selected ascomycetous fungal strains, originating from terrestrial and marine habitats belonging to seven different genera (Penicillium, Talaromyces, Fusarium, Aspergillus, Trichoderma, Dreschlera, and Paecilomyces). We identified four strains, Penicillium purpurogenum rubisclerotium, Fusarium oxysporum, marine strains identified as Talaromyces spp., and Trichoderma atroviride, as potential red pigment producers. The extraction of the pigments is a crucial step, whereby the qualitative and quantitative compositions of each fungal extract need to be respected for reliable identification, as well as preserving bioactivity. Furthermore, there is a growing demand for more sustainable and cost-effective extraction methods. Therefore, a pressurized liquid extraction technique was carried out in this study, allowing a greener and faster extraction step of the pigments, while preserving their chemical structures and bioactivities in comparison to conventional extraction processes. The protocol was illustrated with the production of pigment extracts from P. purpurogenum rubisclerotium and Talaromyces spp. Extracts were analyzed by high-performance liquid-chromatography combined with photodiode array-detection (HPLC-DAD) and high-resolution mass spectrometry (UHPLC-HRMS). The more promising strain was the isolate Talaromyces spp. of marine origin. The main polyketide pigment produced by this strain has been characterized as N-threoninerubropunctamine, a non-toxic red Monascus-like azaphilone pigment.

SELECTION OF CITATIONS
SEARCH DETAIL
...